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Abstract
The Lie point symmetries and corresponding invariant solutions are obtained
for a Gaussian, irrotational, compressible fluid flow. A supersymmetric
extension of this model is then formulated through the use of a superspace
and superfield formalism. The Lie superalgebra of this extended model is
determined and a classification of its subalgebras is performed. The method
of symmetry reduction is systematically applied in order to derive special
classes of invariant solutions of the supersymmetric model. Several new
types of algebraic, hyperbolic, multi-solitonic and doubly periodic solutions
are obtained in explicit form.

PACS numbers: 02.20.Sv, 12.60.Jv, 02.30.Jr, 47.10.−g

1. Introduction

The system of partial differential equations describing a steady, irrotational and compressible
fluid flow in a plane [1] is given by

uy − vx = 0, (ρu)x + (ρv)y = 0, (1.1)

where (u, v) are the Cartesian components of the fluid velocity, and the density ρ is defined as
a function of u and v. The fact that the fluid is irrotational (represented by the first of the two
equations (1.1)) allows us to express the velocity field in terms of a potential function ϕ such
that u = ϕx, v = ϕy . Various density functions ρ are admitted in the literature on the subject
(see e.g. [2–4]), and the most physically interesting instances involve bump-type functions.
One of the most well-investigated examples of the latter is

ρ = (1 + u2 + v2)−1/2. (1.2)
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When this density function ρ is expressed in terms of the velocity potential ϕ and substituted
into equations (1.1), we obtain the minimal surfaces equation in (2+1)-dimensional Minkowski
space [5]: (

ϕx

(1 + (ϕx)2 + (ϕy)2)1/2

)
x

+

(
ϕy

(1 + (ϕx)2 + (ϕy)2)1/2

)
y

= 0. (1.3)

In addition, by using the Wick rotation y = it , one may transform equation (1.3) to the scalar
Born–Infeld equation

(1 + (ϕx)
2)ϕtt − 2ϕxϕtϕxt − (1 − (ϕt )

2)ϕxx = 0, (1.4)

which represents the simplest example of a nonlinear modification of Maxwell’s
electrodynamics in (1 + 1) dimensions [6].

It is interesting to note that the Born–Infeld equation (1.4) is compatible with the following
hydrodynamical-type system expressed in terms of the Riemann invariants [4]:

R+
t − R−R+

x = 0, R−
t − R+R−

x = 0. (1.5)

This can be shown by considering the transformation

R± = ± (1 + (ϕx)
2 − (ϕt )

2)1/2

1 + (ϕx)2
+

ϕxϕt

1 + (ϕx)2
. (1.6)

Equation (1.4) is also linked with the hyperbolic Monge–Ampère equation [7]

uxxutt − (uxt )
2 + 1 = 0, (1.7)

via the Bianchi transformations

utt = (ϕt )
2 − 1

(1 − (ϕt )2 + (ϕx)2)1/2
,

uxt = ϕxϕt

(1 − (ϕt )2 + (ϕx)2)1/2
,

utt = (ϕx)
2 + 1

(1 − (ϕt )2 + (ϕx)2)1/2
.

(1.8)

It should be noted that the system (1.5) can be derived from the Monge–Ampère
equation (1.7) if we substitute

R± = 1

uxx

(uxt ± 1). (1.9)

We may also proceed in the opposite direction by expressing uxx and uxt in terms of R+ and
R−, and using the relations

utt = 2R+R−

R+ − R− , uxt = R+ + R−

R+ − R− , uxx = 2

R+ − R− . (1.10)

It should be noted that the Monge–Ampère equation (1.7) can be linearized through a half-
Legendre transformation [8]

ũ(z, y) = u(s, y) − sus(s, y), (1.11)

where we define

z = us, (1.12)

provided that uss �= 0. This transformation leads us directly to the linear wave equation

ũyy − ũzz = 0. (1.13)
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Finally, the system for the Chaplygin gas

Ut = 1
2 (U 2 − V −2)x, Vt = (UV )x, (1.14)

expressed as a conservation law, can be linked to the system (1.5) through the relations

R± = U ± 1

V
, (1.15)

and to the Monge–Ampère equation (1.7) through the compatibility

U = uxt

uxx

, V = uxx, (1.16)

along with the relation

utt = U 2V − V −1. (1.17)

In fact, both systems (1.4) and (1.14) can be derived, through different parametrizations, from
the Nambu–Goto action for a string evolving in a (2 + 1)-dimensional target spacetime [4].
The Chaplygin gas (1.14) in (1 + 1) dimensions is derived from the light cone gauge, while
the Born–Infeld equation (1.4) is obtained from a Cartesian parametrization. The symmetry
properties, subalgebra classifications and invariant solutions of these models have been studied
extensively [4, 9, 10].

In the past few years, there has also been a considerable amount of interest in the study of
theories involving odd (fermionic) Grassmann variables and superalgebras. Such systems are
interesting because ordinary matter generally consists of fermions whereas bosons are only
concerned with the interactions. One relatively recent line of inquiry in this area of research
has involved the construction of supersymmetric extensions of existing classical and quantum
systems. This approach, first used in the context of particle physics, was successfully employed
to supersymmetrize theories involving classical and quantum fields [4, 11, 12]. Application of
the techniques to fluid dynamics began with the study of simple Euler-type systems [13–15],
followed by extensive work on a supersymmetric version of the Korteweg–de Vries equation
[16–18]. More recently, the Chaplygin gas was supersymmetrized in both (1 + 1) and (2 + 1)

dimensions by R Jackiw, Y Bergner and A P Polychronakos [4, 19, 20] through the addition
of fermionic-valued fields ψ to the classical theory in the bosonic field θ . In those models,
the velocity was no longer irrotational but was expressed in terms of both the bosonic and
fermionic fields:

v = ∇θ − 1
2ψ∇ψ. (1.18)

Their approach involving a Lagrangian formulation of the fluid dynamics equations has been
applied, among other areas, to an N = 1 supersymmetric extension of polytropic gas dynamics
[21], a covariant and supersymmetric theory of relativistic hydrodynamics in four-dimensional
Minkowski space [22, 23], and a Kaluza–Klein model of a relativistic fluid [24].

It must be said that the physical interpretation of the systems resulting from the
supersymmetric extensions remains an intriguing and still open question. However, a number
of remarkable, physically meaningful solutions obtained in both particle physics [11, 25] and
fluid dynamics [26] attest to the potential of this methodology and motivate further attempts
at its application. In this paper, we apply it to a Gaussian fluid flow which, to our knowledge,
has not been supersymmetrized before.

The objective of this paper is to investigate the equations of a steady, irrotational and
compressible fluid flow (1.1) involving the Gaussian density function

ρ = e−u2−v2
. (1.19)

This type of Gaussian fluid plays an essential role in many areas of physics, including fluid
dynamics [3, 27], plasma physics [28] and astrophysics [3]. When the density function (1.19)
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is substituted into equations (1.1) and the velocity components expressed in terms of the
potential ϕ, we obtain the equation

(1 − (ϕx)
2)ϕxx − 2ϕxϕyϕxy + (1 − (ϕy)

2)ϕyy = 0. (1.20)

Through the use of a method similar to that used for the Born–Infeld equation (1.4), we will
formulate a supersymmetric generalization of equation (1.20). Due to its interesting symmetry
properties and solutions, we will also consider a slightly modified version of equation (1.20)
found in statics of liquids [29]:

(1 + (ϕx)
2)ϕxx − 2ϕxϕyϕxy + (1 + (ϕy)

2)ϕyy = 0. (1.21)

For the purpose of considering both equations (1.20) and (1.21), let us introduce the parameter
ε = ±1. The values ε = 1 and ε = −1 will correspond to equations (1.20) and (1.21),
respectively. Thus, the two equations may be represented in the form

(1 − ε(ϕx)
2)ϕxx − 2ϕxϕyϕxy + (1 − ε(ϕy)

2)ϕyy = 0. (1.22)

The goal is to construct supersymmetric extensions of both the Gaussian fluid flow
equation (1.20) and its modified version (1.21), to study their symmetry properties and to
obtain new classes of invariant solutions of the extended models. The approach used in this
paper is different from that used by Jackiw, Bergner and Polychronakos for the Chaplygin
gas, and is based on the symmetry reduction method adapted to Grassmann-valued partial
differential equations. It has been used in the past for the supersymmetric Korteweg–de Vries
equation [18] and, more recently, by one of the authors for the supersymmetric Born–Infeld
scalar model [30].

Our paper is organized as follows. In section 2, we identify the symmetries, subalgebra
classifications and invariant solutions of the classical Gaussian fluid flow equation (1.22).
In section 3, we describe the most general form of the supersymmetric extension in terms
of a superspace formalism. In section 4, we examine the symmetry properties of the
extended system and compare them to those of the supersymmetric scalar Born–Infeld equation
constructed previously and describe the subalgebra classification structure. In section 5, we use
the symmetry reduction method to obtain invariant solutions, including elementary solutions
(algebraic with one and two simple poles, trigonometric and hyperbolic) and doubly periodic
solutions which can be expressed in terms of elliptic functions. Finally, section 6 contains a
summary of our results.

2. Symmetry properties of the classical Gaussian fluid flow

Before we construct our supersymmetric extension, we first examine the Lie point symmetries
and invariant solutions of the classical irrotational Gaussian fluid flow (1.22).

2.1. The case where ε = 1

We consider first of all the case where ε = 1. The Lie symmetry algebra G(1) of equation (1.20)
is spanned by the following five generators

S(1) = x∂x + y∂y + ϕ∂ϕ, M = −y∂x + x∂y,

T1 = ∂x, T2 = ∂y, T3 = ∂ϕ,
(2.1)

which represent a dilation, a rotation and three translations in each of the three variables. The
commutation relations of the algebra G(1) spanned by the generators (2.1) are summarized in
table 1.
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Table 1. Commutation table for the Lie symmetry algebra G(1) generated by the vector fields (2.1).

S(1) M T1 T2 T3

S(1) 0 0 −T1 −T2 −T3

M 0 0 −T2 T1 0
T1 T1 T2 0 0 0
T2 T2 −T1 0 0 0
T3 T3 0 0 0 0

The Lie algebra G(1) can be decomposed as the semi-direct sum

G(1) = {S(1),M} +⊃{T1, T2, T3}. (2.2)

We now classify the one-dimensional subalgebras of the Lie algebraG(1) using the classification
methods as described in [31]. That is, we construct a list of representatives of conjugacy
classes of subalgebras in such a way that each one-dimensional subalgebra is conjugate to
one and only one element of the list. We focus on one-dimensional subalgebras with orbits of
codimension 1 because we are only interested in invariant (as opposed to partially invariant,
conditionally invariant or generic) solutions, so that one-dimensional reductions will lead to
ordinary differential equations. For each of the elements of the following list, we first identify
the representative subalgebra of the conjugacy class. Next, we describe the invariants of the
subalgebra and (except in the case of L1) the change of variable. Finally, using the symmetry
reduction method as described in [32, 33], we substitute the change of variable into the original
equation (1.20) in order to obtain a reduced ordinary differential equation in the symmetry
variable ξ .

L1 = {T3}, invariants: x, y;
L2 = {T1}, invariants: ξ = y, ϕ, change of variable: ϕ = ϕ(y), (2.3)

(1 − (ϕy)
2)ϕyy = 0;

L3 = {T3 + mT1}m�=0, invariants: ξ = y, ϕ − 1

m
x,

change of variable: ϕ = F(y) +
1

m
x, (2.4)

(1 − (Fy)
2)Fyy = 0;

L4 = {S(1)}, invariants: ξ = x

y
,
ϕ

y
, change of variable: ϕ = yF(ξ),

[(1 + ξ 2) − (1 + ξ 2)2(Fξ )
2 + 2ξ(1 + ξ 2)FFξ − ξ 2F 2]Fξξ = 0; (2.5)

L5 = {M}, invariants: ξ = x2 + y2, ϕ, change of variable: ϕ = ϕ(ξ),

ϕξ + ξϕξξ − 2ξ(ϕξ )
3 − 4ξ 2(ϕξ )

2ϕξξ = 0; (2.6)

L6 = {S(1) + aM}a �=0, invariants: ξ = arctan
(y

x

)
− a ln (

√
x2 + y2),

ϕ√
x2 + y2

,

change of variable: ϕ =
√

x2 + y2F(ξ),
(2.7)

−2a(1 + a2)FFξFξξ + (1 + a2)2(Fξ )
2Fξξ + a2F 2Fξξ − (1 + a2)Fξξ

−a(1 + a2)(Fξ )
3 + (1 + 2a2)F (Fξ )

2 − aF 2Fξ + 2aFξ − F = 0;
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L7 = {M + µT3}µ±1, invariants: ξ = x2 + y2, ϕ − µ arcsin

(
y√

x2 + y2

)
,

change of variable: ϕ = F(ξ) + µ arcsin

(
y√

x2 + y2

)
, (2.8)

Fξ + 2ξFξ − 4ξ 2(Fξ )
3 + 2ξ 2Fξξ − 8ξ 3(Fξ )

2Fξξ = 0.

In the case of the subalgebra L1, we obtain no reduced equation and therefore no invariant
solution. This corresponds to the fact that there is no function ϕ(x, y) which is invariant
under the transformation ϕ −→ ϕ + K , where K is a constant. Solutions invariant under the
subalgebras L2 and L3 are linear polynomials in x and y.

For subalgebra L4, we obtain the following three solutions for equation (2.5)

F(ξ) = C1ξ + C2, (2.9)

which is a simple linear function, and the two expressions

F(ξ) =
√

1 + ξ 2 (± arctan ξ + C1) , (2.10)

which correspond to a kink-type fluid density (a condensation wave). For the subalgebra L6,
the solution of equation (2.6) is

φ(ξ) = ± i

2

∫ ⎛
⎝L

(−4C2
1

ξ

)
ξ

⎞
⎠

1/2

dξ + C2, (2.11)

where the Lambert function, y = L(x), is the solution to the equation

yey = x. (2.12)

Although, for each x, there are infinitely many values which satisfy (2.12), it should be noted
that exactly one of the branches is analytic at zero. The multi-valuedness of this solution
exhibits ergodic behavior [34].

Finally, for subalgebras L6 and L7, equations (2.7) and (2.8) do not possess the Painlevé
property.

2.2. The case where ε = −1

Considering now the case where ε = −1, we see that the Lie symmetry algebra G(−1) of
equation (1.21) is spanned by the following four generators

S(−1) = x∂x + y∂y + ϕ∂ϕ, t1 = ∂x, t2 = ∂y, t3 = ∂ϕ, (2.13)

which differs from the case ε = 1 in the sense that there is no rotation present. It should
be noted that this algebra is solvable. A classification of the one-dimensional subalgebras of
G(−1) leads us to conclude that each subalgebra of the form {at1 + bt2 + ct3} (where a, b and
c are real constants) is in its own separate conjugacy class, whereas every other subalgebra
is conjugate to {S(−1)}. Using the classical symmetry reduction method, one can obtain the
following invariant solutions of (1.21). A solution invariant under the action of the dilation
S(−1) must be of the form ϕ = yF(ξ), where ξ = x/y is the symmetry variable. In this case,
equation (1.21) reduces to the ordinary differential equation:

((1 + ξ 2) + (1 − ξ 2)2(Fξ )
2 + 2ξ(1 − ξ 2)FFξ + ξ 2F 2)Fξξ = 0. (2.14)
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Due to the factorization of (2.14), one obtains directly a solution which is linear in ξ and
corresponds to the (linear) solution u(x, y) = C1x + C2y, where C1 and C2 are real constants.
In addition, one obtains the following two solutions expressed in terms of elliptic functions

F(ξ) = C1

√
ξ − 1

√
ξ + 1 ±

√
−1 − ξ 2

1 + ξ 2
(ξ + ξ 3 +

√
1 − ξ 2

√
1 + ξ 2(F(ξ, i) − E(ξ, i))),

(2.15)

where

F(z, k) =
∫ z

0

1√
1 − α2

√
1 − k2α2

dα (2.16)

is the incomplete elliptic integral of the first kind (the inverse of the Jacobi function sn) and

E(z, k) =
∫ z

0

√
1 − k2α2

√
1 − α2

dα (2.17)

is the incomplete elliptic integral of the second kind [35]. Solutions invariant under a
subalgebra of the form {at1 + bt2 + ct3} all consist of linear polynomials in x and y.

3. Supersymmetric extension

In analogy with the case of the supersymmetric Born–Infeld scalar equation, we construct a
supersymmetric extension of equations (1.22) through a superspace Grassmannian formalism.
More specifically, we supplement the set of bosonic (even) independent variables {(x, y)} with
a fermionic (odd) Grassmann parameter θ and replace the bosonic function ϕ(x, y) with the
superfield 
(x, y, θ) defined as


(x, y, θ) = ψ(x, y) + θϕ(x, y), (3.1)

where ψ(x, y) is a fermionic field. We construct our extension in such a way that it is invariant
under the supersymmetry transformation

x → x − ηθ , θ → θ + η, (3.2)

where η is a constant fermionic parameter. This transformation is generated by the infinitesimal
supersymmetry operator

H = ∂θ − θ∂x . (3.3)

In order to make our superfield theory manifestly invariant under the action of H, we write the
equation in terms of the covariant derivative operator

D = ∂θ + θ∂x , (3.4)

which possesses the property that it anticommutes with the operator H. That is,

{H,D} = HD + DH = 0. (3.5)

The most general form of a supersymmetric extension of (1.22) is given by the following
equation in terms of the superfield 
 and various orders and combinations of the derivatives
D and ∂y

D4
 − εa(D2
)(D3
)(D5
) − ε(1 − a)(D3
)2(D4
) − 2b(D2
)(D
)y(D
3
)y

− 2c(D3
)
y(D
3
)y − 2(1 − b − c)(D3
)(D
)y(D

2
)y + 
yy

− εd
y(D
)y(D
)yy − ε(1 − d)((D
)y)
2
yy = 0, (3.6)

where a, b, c and d are arbitrary real parameters. Here, the subscript y indicates differentiation
with respect to y. This equation can be decomposed into the following two partial differential
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equations for the fields ϕ(x, y) and ψ(x, y) corresponding respectively to the coefficient of
the fermionic variable θ and that of the remaining terms

ϕxx − ε(ϕx)
2ϕxx + εaϕxxψxψxx + εaϕxψxψxxx − 2ϕxϕyϕxy + 2bϕxyψxψxy + 2bϕyψxψxxy

+ 2cϕxyψyψxx + 2cϕxψyψxxy − 2ϕyψxxψxy + 2bϕyψxxψxy + 2cϕyψxxψxy + ϕyy

− ε(ϕy)
2ϕyy + ε dϕyψyψxyy + ε dϕyyψyψxy − 2εϕyψxyψyy + 2ε dϕyψxyψyy = 0,

(3.7)

and

ψxx − εaϕxϕxxψx − ε(ϕx)
2ψxx + εa(ϕx)

2ψxx − 2bϕyϕxyψx − 2cϕxϕxyψy − 2ϕxϕyψxy

+ 2bϕxϕyψxy + 2cϕxϕyψxy + ψyy − ε dϕyϕyyψy − ε(ϕy)
2ψyy + εd(ϕy)

2ψyy = 0.

(3.8)

In the limit where ψ → 0, equation (3.7) reduces to the standard bosonic equation (1.22).
Equation (3.8) is a new equation involving the fermionic field ψ .

4. Lie symmetry superalgebra

For the system of partial differential equations defined by the system (3.7) and (3.8), the
following symmetries are present for all values of the parameters a, b, c and d. We have the
following dilation in independent and dependent variables

S = x∂x + y∂y + ϕ∂ϕ + 3
2ψ∂ψ , (4.1)

along with the following four translations

P1 = ∂x , P2 = ∂y , Z = ∂ϕ , Y = ∂ψ . (4.2)

In addition, in the case where a = 0 and b = 0, we have the following additional fermionic
symmetry:

Q1 = x∂ψ . (4.3)

Similarly, in the case where c = 0 and d = 0, we have the additional generator:

Q2 = y∂ψ . (4.4)

Finally, it should be noted that the generators H and D given in equations (3.3) and (3.4),
which involve the independent variables x and θ in the superspace, correspond to the following
generalized symmetries of the coordinate space X × U = {(x, y, ϕ,ψ)}:

H = −ψx∂ϕ + ϕ∂ψ, (4.5)

and

D = ψx∂ϕ + ϕ∂ψ. (4.6)

It is interesting to note that the symmetry generators found for our supersymmetric
Gaussian fluid flow equations (3.7) and (3.8) are analogous to those found for the
supersymmetric scalar Born–Infeld extension [30]. The only instance for which all seven
symmetries (4.1), (4.2), (4.3) and (4.4) are present is the case where a = 0, b = 0, c = 0 and
d = 0. From here onward, we shall focus our attentions on this specific case. Equations (3.6),
(3.7) and (3.8) become

D4
 − ε(D3
)2(D4
) − 2(D3
)(D
)y(D
2
)y + 
yy − ε((D
)y)

2
yy = 0, (4.7)

ϕxx − ε(ϕx)
2ϕxx − 2ϕxϕyϕxy − 2ϕyψxxψxy + ϕyy − ε(ϕy)

2ϕyy − 2εϕyψxyψyy = 0, (4.8)
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Table 2. Commutation table for the Lie symmetry superalgebra in the case where a, b, c, d = 0.

S P1 P2 Z Y Q1 Q2

S 0 −P1 −P2 −Z − 3
2 Y − 1

2 Q1 − 1
2 Q2

P1 P1 0 0 0 0 Y 0
P2 P2 0 0 0 0 0 Y
Z Z 0 0 0 0 0 0
Y 3

2 Y 0 0 0 0 0 0

Q1
1
2 Q1 −Y 0 0 0 0 0

Q2
1
2 Q2 0 −Y 0 0 0 0

and

ψxx − ε(ϕx)
2ψxx − 2ϕxϕyψxy + ψyy − ε(ϕy)

2ψyy = 0, (4.9)

respectively. The commutation and anticommutation relations of the superalgebra L formed
by the generators (4.1), (4.2), (4.3) and (4.4) are summarized in table 2.

4.1. One-dimensional subalgebras

In this section, we describe the classification of the one-dimensional subalgebras of the Lie
superalgebra L obtained in section 3. In other words, we proceed to construct a list of
representatives of conjugacy classes of subalgebras in such a way that each one-dimensional
subalgebra is conjugate to one and only one element of the list. This classification has already
been performed for the Born–Infeld superalgebra [30], and so we describe the results. We
focus on one-dimensional subalgebras with orbits of codimension 1 because we are only
interested in invariant (as opposed to partially invariant, conditionally invariant or generic)
solutions, so that one-dimensional reductions will lead to ordinary differential equations. The
analysis led to the following results.

The one-dimensional splitting subalgebras are

L1 = {S}, L2 = {P1}, L3 = {P2}, L4,m = {P1 + mP2}m�=0,

L5 = {Z}, L6,m = {Z + mP1}m�=0, L7,m = {Z + mP2}m�=0,

L8,m,n = {Z + mP1 + nP2}m,n�=0, L9 = {Y }, L10 = {Q1}, L11 = {Q2},
L12,k = {Q1 + kQ2}k �=0,

(4.10)

and the non-splitting subalgebras are

L2,η1,η2 = {P1 + η1Q1 + η2Q2}, L3,η1,η2 = {P2 + η1Q1 + η2Q2},
L4,m,η1,η2 = {P1 + mP2 + η1Q1 + η2Q2}m�=0, L5,η1,η2 = {Z + η1Q1 + η2Q2},
L6,m,η1,η2 = {Z + mP1 + η1Q1 + η2Q2}m�=0,

L7,m,η1,η2 = {Z + mP2 + η1Q1 + η2Q2}m�=0,

L8,m,n,η1,η2 = {Z + mP1 + nP2 + η1Q1 + η2Q2}m,n�=0,

(4.11)

where m, n and k are constant bosonic parameters, and η1 and η2 are fermionic constants.
Throughout this paper, we use the convention that underlined constants are fermionic. It is
important to note that each non-splitting subalgebraLi,η1,η2 is an element of the same conjugacy
class as the subalgebra Li,Kη1,Kη2 , where K is a positive constant.
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Table 3. Invariants and change for variable for each splitting and non-splitting subalgebra.

Subalgebra Invariants Relations and change of variable

L1 = {D} ξ = x
y
,

ϕ
y
, y−3/2ψ ϕ = yF(ξ), ψ = y3/2�(ξ)

L2 = {P1} y, ϕ, ψ ϕ = ϕ(y), ψ = ψ(y)

L3 = {P2} x, ϕ, ψ ϕ = ϕ(x), ψ = ψ(x)

L4,m = {P1 + mP2}m �=0 ξ = y − mx, ϕ, ψ ϕ = ϕ(ξ), ψ = ψ(ξ)

L5 = {Z} x, y, ψ N/A
L6,m = {Z + mP1}m �=0 y, x − mϕ,ψ ϕ = 1

m
(F (y) + x), ψ = ψ(y)

L7,m = {Z + mP2}m �=0 x, y − mϕ,ψ ϕ = 1
m

(F (x) + y), ψ = ψ(x)

L8,m,n = ξ = x − m
n
y, ϕ − y

n
, ψ ϕ = F(ξ) + 1

n
y, ψ = ψ(ξ)

{Z + mP1 + nP2}m,n �=0

L9 = {Y } x, y, ϕ N/A
L10 = {Q1} x, y, ϕ N/A
L11 = {Q2} x, y, ϕ N/A
L12,k = {Q1 + kQ2}k �=0 x, y, ϕ N/A
L2,η1,η2 = {P1 y, ϕ, ψ − 1

2 η1x
2 − η2xy ϕ = ϕ(y), ψ = �(y) + 1

2 η1x
2 + η2xy

+η1Q1 + η2Q2}
L3,η1,η2 = {P2 x, ϕ, ψ − η1xy − 1

2 η2y
2 ϕ = ϕ(x), ψ = �(x) + η1xy + 1

2 η2y
2

+η1Q1 + η2Q2}
L4,m,η1,η2 = {P1 + mP2 ξ = y − mx, ϕ, ϕ = ϕ(ξ),

+η1Q1 + η2Q2}m �=0 ψ − 1
2 η1x

2 + 1
2 η2mx2 − η2xy ψ = �(ξ) + 1

2 η1x
2 − 1

2 η2mx2 + η2xy

L5,η1,η2 = {Z x, y,ψ − (η1x + η2y)ϕ N/A

+η1Q1 + η2Q2}
L6,m,η1,η2 = {Z + mP1 y, ϕ − 1

m
x,ψ − 1

2m
η1x

2 − 1
m

η2xy ϕ = F(y) + 1
m

x,

+η1Q1 + η2Q2}m �=0 ψ = �(y) + 1
2m

η1x
2 + 1

m
η2xy

L7,m,η1,η2 = {Z + mP2 x, ϕ − 1
m

y,ψ − 1
m

η1xy − 1
2m

η2y
2 ϕ = F(x) + 1

m
y,

+η1Q1 + η2Q2}m �=0 ψ = �(x) + 1
m

η1xy + 1
2m

η2y
2

L8,m,n,η1,η2 = ξ = x − m
n
y, ϕ − 1

n
y, ϕ = F(ξ) + 1

n
y,

{Z + mP1 + nP2 ψ − 1
n
η1xy + m

2n2 η1y
2 − 1

2n
η2y

2 ψ = �(ξ) + 1
n
η1xy − m

2n2 η1y
2 + 1

2n
η2y

2

+η1Q1 + η2Q2}m,n �=0

5. Symmetry group reductions and solutions

In this section, we make use of the classical symmetry reduction method to determine the
invariants and reduced equations corresponding to each of the one-dimensional subalgebras
in equations (4.10) and (4.11). In each case, we obtain at least one invariant expressed solely
in terms of the independent variables x and y, which we call the symmetry variable ξ . In most
other cases, the remaining two invariants involve the dependent functions ϕ and ψ , and they
are identified as the functions F(ξ) and �(ξ) respectively. Expressing the fields ϕ and ψ in
terms of the invariants, we substitute the derivatives into the supersymmetric system (4.8) and
(4.9) in order to obtain the reduced system of ordinary differential equations. The results are
presented in tables 3 and 4. Where the Painlevé property is satisfied for these ODEs, we give
an exact, analytic solution of the system of reduced equations, along with the corresponding
solution of the supersymmetric system (4.10) and (4.11). It should be noted that this reduction
procedure cannot be employed for subalgebras whose symmetry generators do not involve
derivatives with respect to independent variables, nor for the generalized symmetries (4.5)
and (4.6). Indeed, such transformations involve shifts only in the dependent variables, which
cannot under any circumstances leave a solution invariant.
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Table 4. Reduced equations corresponding to each splitting and non-splitting subalgebra.

Subalgebra Reduced equations

L1 = {D} (1 + ξ2)Fξξ − ε(1 + εξ2)2(Fξ )
2Fξξ + 2ξ(1 + εξ2)FFξFξξ

−εξ2F 2Fξξ + 3
4 ε(F − ξFξ )��ξ − 3

2 εξ(F − ξFξ )��ξξ

+(1 + εξ2)(F − ξFξ )�ξ �ξξ = 0,
(1 + ξ2)�ξξ − ε(1 + εξ2)2(Fξ )

2�ξξ + 2ξ(1 + εξ2)FFξ�ξξ

−εξ2F 2�ξξ + ξ(1 + εξ2)(Fξ )
2�ξ − ε(2ξ2 + ε)FFξ�ξ

+εξF 2�ξ − ξ�ξ − 3
4 εξ2(Fξ )

2� + 3
2 εξFFξ� − 3

4 εF 2� + 3
4 � = 0

L2 = {P1} ϕyy − ε(ϕy)2ϕyy = 0,
ψyy − ε(ϕy)2ψyy = 0

L3 = {P2} ϕxx − ε(ϕx)2ϕxx = 0,
ψxx − ε(ϕx)2ψxx = 0

L4,m = {P1 + mP2}m �=0 (m2 + 1)ϕξξ − ε(m2 + ε)2(ϕξ )
2ϕξξ = 0,

(m2 + 1)ψξξ − ε(m2 + ε)2(ϕξ )
2ψξξ = 0

L6,m = {Z + mP1}m �=0 m2Fyy − ε(Fy)2Fyy = 0,
m2ψyy − ε(Fy)2ψyy = 0

L7,m = {Z + mP2}m �=0 m2Fxx − ε(Fx)2Fxx = 0,
m2ψxx − ε(Fx)2ψxx = 0

L8,m,n = {Z + mP1 + nP2}m,n �=0

(
−ε

(
1 + ε m2

n2

)2
(Fξ )

2 +
(

2 m

n2 + 2ε m3

n4

)
Fξ +

(
1 + m2

n2 − ε m2

n4

))
Fξξ = 0,(

−ε
(

1 + ε m2

n2

)2
(Fξ )

2 +
(

2 m

n2 + 2ε m3

n4

)
Fξ +

(
1 + m2

n2 − ε m2

n4

))
ψξξ = 0

L2,η1,η2 = {P1 −2εϕyη2�yy − 2ϕyη1η2 + ϕyy − ε(ϕy)2ϕyy = 0,

+η1Q1 + η2Q2} �yy − ε(ϕy)2�yy + η1 = 0

L3,η1,η2 = {P2 (1 − ε(ϕx)2)ϕxx = 0,

+η1Q1 + η2Q2} �xx − ε(ϕx)2�xx + η2 = 0

L4,m,η1,η2 = {P1 + mP2 (1 + m2)ϕξξ − ε(1 + εm2)2(ϕξ )
2ϕξξ

+η1Q1 + η2Q2}m �=0 +2ϕξ ((−εη2 + mη1)�ξξ + η2η1) = 0,

(1 + m2)�ξξ − ε(1 + εm2)2(ϕξ )
2�ξξ

+m(2η2 − εmη1 + εm2η2)(ϕξ )
2 + (η1 − mη2) = 0

L6,m,η1,η2 = {Z + mP1 Fyy − ε(Fy)2Fyy − 2
m2 η1η2Fy − ε 2

m
η2Fy�yy = 0,

+η1Q1 + η2Q2}m �=0 �yy − ε(Fy)2�yy − 2
m2 η2Fy − ε 1

m3 (1 − εm2)η1 = 0

L7,m,η1,η2 = {Z + mP2 Fxx − ε(Fx)2Fxx + 2
m2 η1�xx − ε 2

m3 η1η2 = 0,

+η1Q1 + η2Q2}m �=0 �xx − ε(Fx)2�xx − 2
m2 η1Fx − ε 1

m3 (1 − εm2)η2 = 0

L8,m,n,η1,η2 = {Z + mP1 + nP2

(
−ε

(
1 + ε m2

n2

)2
(Fξ )

2 +
(

2 m

n2 + 2ε m3

n4

)
Fξ +

(
1 + m2

n2 − ε m2

n4

))
Fξξ

+η1Q1 + η2Q2}m,n �=0 + 2
n2

(
η1 − ε m

n
η2

)
(1 − mFξ )�ξξ − ε 2

n3 (1 − mFξ )η1η2 = 0,(
−ε

(
1 + ε m2

n2

)2
(Fξ )

2 +
(

2 m

n2 + 2ε m3

n4

)
Fξ +

(
1 + m2

n2 − ε m2

n4

))
�ξξ

+
(
−ε 2m2

n4 Fξ − 2
n2 Fξ + 2m

n2 (Fξ )
2 + ε m3

n4 (Fξ )
2 − m

n2 + ε m

n4

)
η1

+
(

1
n

− ε 1
n3 + ε 2m

n3 Fξ − ε m2

n3 (Fξ )
2
)
η2 = 0

5.1. Splitting subalgebras and their reductions

We begin our analysis by considering the splitting subalgebras. In the case of subalgebra L1,
we obtain two equations involving the functions F and �, coupled in an involved way. In the
specific case where the condition(

3
4ε��ξ − 3

2εξ��ξξ + (1 + εξ 2)�ξ�ξξ

)
(F − ξFξ ) = 0 (5.1)
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holds, we can decouple the first equation which then becomes an ordinary differential equation
in F

((1 + ξ 2) − ε(1 + εξ 2)2(Fξ )
2 + 2ξ(1 + εξ 2)FFξ − εξ 2F 2)Fξξ = 0. (5.2)

In the case where ε = 1, there are three functionally independent solutions of equation (5.2).
The first two are expressed in terms of radicals and inverse trigonometric functions:

F(ξ) =
√

1 + ξ 2 (± arctan ξ + C1) . (5.3)

Here, the function � can be determined from the second reduced equation in combination
with the condition (5.1), and is given by the expression

�(ξ) = E1 (1 + ξ 2)3/4(± arctan ξ + C1)
3/4exp

(−( ± 3
4C1 + 3

8 arctan ξ
)

arctan ξ
)
. (5.4)

Here, condition (5.1) is identically satisfied due to the fact that the constant E1 is fermionic.
The solution (5.3) corresponds to a kink-type fluid density

ρ = exp

(
−

(
1 +

(
arctan

x

y
+ C1

)2
))

, C1 ∈ R, (5.5)

where the velocity components are given by

u = x√
x2 + y2

(
arctan

x

y
+ C1

)
+

y√
x2 + y2

(5.6)

v = y√
x2 + y2

(
arctan

x

y
+ C1

)
− x√

x2 + y2
. (5.7)

This is a kink-type density solution, which varies from the value exp
(−(

1 +
( − 

2 + C1
)2))

to the value exp
(−(

1 +
(


2 + C1

)2))
, and depends only on the polar angle of the position on

the plane. This solution is real, asymptotic and discontinuous on the x-axis, and represents a
condensation wave.

The third solution of equation (5.2) is the linear function

F(ξ) = C1ξ + C2, (5.8)

which gives us the following solution for �

�(ξ) = E1
((

C2
2 − 1

)
ξ 2 − 2C1C2ξ +

(
C2

1 − 1
))3/2

((
1 − C2

2

)
ξ + C1C2 +

√
C2

1 + C2
2 − 1

)3/2
. (5.9)

In the case where ε = −1, there are again three independent solutions of equation (5.2). The
first two are given in terms of elliptic functions

F(ξ) = C1

√
ξ − 1

√
ξ + 1 ±

√
−1 − ξ 2

1 + ξ 2
(ξ + ξ 3 +

√
1 − ξ 2

√
1 + ξ 2(F(ξ, i) − E(ξ, i))),

(5.10)

where C1 ∈ R, and F(z, k) and E(z, k) are the incomplete elliptic integrals of the first and
second kinds as defined in equations (2.16) and (2.17) respectively. Solution (5.10) is a
complex-valued function, but for large positive values of C1, the imaginary part provides a
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good approximation for a localized static bump solution. The function � is given by the
expression

�(ξ) = E1 exp

(
3

4

∫ (
C1(F(ξ, i) − E(ξ, i))(2ξ 10 + 6ξ 8 + 4ξ 6 − 4ξ 4 − 6ξ 2 − 2)

+
√

−1 − ξ 2(1 + ξ 2)7/2
√

ξ − 1
√

ξ + 1
√

(−ξ − 1)(ξ − 1) ·
× (

1 + C2
1 + ξ 2 + (F(ξ, i) − E(ξ, i))2

))/
× ((ξ − 1)(ξ + 1)((E(ξ, i) − F(ξ, i))

√
−1 − ξ 2

√
ξ − 1

√
ξ + 1(1 + ξ 2)4

+ C1(1 + ξ 2)9/2
√

(−ξ − 1)(ξ − 1)

+ x
√

−1 − ξ 2(1 + ξ 2)7/2
√

ξ − 1
√

ξ + 1
√

(−ξ − 1)(ξ − 1))) dξ

)
. (5.11)

The third solution of equation (5.2) is the linear function

F(ξ) = C1ξ + C2, (5.12)

which gives us the following equation for �(
1 + C2

1 + 2C1C2ξ + ξ 2 + C2
2ξ

2)�ξξ +
(−C2

2ξ − ξ − C1C2
)
�ξ + 3

4

(
1 + C2

2

)
� = 0. (5.13)

Solving equation (5.13), we obtain the hyperbolic solution

�(ξ) = C3

√
g(ξ) sinh

⎛
⎝∫ 3

√
1 + C2

1 + 2C1C2ξ + ξ 2 + C2
2ξ

2
(
1 + C2

2

)2

2
√

1 + C2
2 g(ξ)

dξ

⎞
⎠

+ C4

√
g(ξ) cosh

⎛
⎝∫ 3

√
1 + C2

1 + 2C1C2ξ + ξ 2 + C2
2ξ

2
(
1 + C2

2

)2

2
√

1 + C2
2 g(ξ)

dξ

⎞
⎠, (5.14)

where we have defined

g(ξ) = 3C2
1C

2
2 − C2

2 − C2
1 − 1 + 6C1C2ξ + 6C3

2C1ξ + 6C2
2ξ 2 + 3C4

2ξ 2 + 3ξ 2. (5.15)

For subalgebra L2, we obtain the following two solutions. First, a trivial linear solution in
y for both ϕ and ψ , and second a solution which is linear for ϕ (ϕ(y) = ± iy + C2) but where
ψ is an arbitrary function of y. In particular, this includes the case where ψ is a solitonic,
bump, kink or multiple wave solution. From subalgebra L3, we obtain solutions similar to
those for L2 except that the argument y is replaced by x.

For subalgebra L4, we should distinguish two separate cases. In the case where ε = −1
and m = ±1, we obtain the linear traveling wave

ϕ(x, y) = C1(y ± x) + C2, ψ(x, y) = K1(y ± x) + K2, (5.16)

where C1 and C2 are bosonic constants and K1 and K2 are fermionic constants. For all other
cases of ε and m, we obtain two separate families of solutions, one of which is linear

ϕ(x, y) = C1(y − mx) + C2, ψ(x, y) = K1(y − mx) + K2, (5.17)

and the other, where ϕ(x, y) is given by the specific expression

ϕ(x, y) = ±
(

ε
m2 + 1

(m2 + ε)2

)1/2

(y − mx) + C2, (5.18)

while the fermionic field ψ is an arbitrary function of the single quantity y − mx. This allows
us to consider a wide range of interesting physical phenomena, including traveling waves,
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center waves, bumps, kinks and multiple waves. In particular, we can choose fermionic
solitary wave solutions, which are particularly interesting since they have been extensively
studied and could give us information about the fermionic medium under consideration.

From subalgebras L6 and L7, we obtain linear solutions for ϕ similar to those discussed
above for L2 and L3 above, respectively. We still obtain solutions for the fermionic field ψ

which are arbitrary functions of y and x respectively. For subalgebra L8, we get yet another
linear solution similar to that of L4, but also the specific solution

ϕ(x, y) = m ± n
√

ε(m2 + n2)

m2 + εn2

(
x − m

n
y
)

+ C2, ψ = ψ
(
x − m

n
y
)

, (5.19)

in terms of an arbitrary function for ψ . This represents a propagation wave in x and y. Because
of this freedom in ψ , we can consider, for example, bounded elementary, trigonometric,
periodic and doubly periodic solutions, as well as Painlevé transcendents. Consequently,
different physical phenomena can be considered.

5.2. Non-splitting subalgebras and their reductions

Let us turn now to the non-splitting subalgebras. Combining the two reduced equations for
subalgebra L2, we obtain the following second-order ordinary differential equation for ϕ only

(1 − ε(ϕy)
2)2ϕyy − 2η1η2(ϕy)

3 + 4δε,1ϕyη1η2 = 0, (5.20)

where

δa,b =
{

1, if a = b

0, if a �= b
(5.21)

is the usual Kronecker delta function. Equation (5.20) can be converted through the substitution
ω = ϕy to a first-order equation

(1 − ε(ω)2)2ωy − 2η1η2ω
3 + 4δε,1ωη1η2 = 0. (5.22)

In the case where ε = −1, equation (5.22) can be integrated to give the transcendental relation
for ω

4ω2 ln ω − 4η1η2ω
2y + ω4 − 1 − 4C1η1η2ω

2 = 0. (5.23)

The subalgebra L3 leads us to the quadratic solution

ϕ(x) = C1x + C2, ψ(x) = − 1

2
(
1 − εC2

1

)η2x
2 + K1x + K2 + η1xy +

1

2
η2y

2. (5.24)

In addition, in the case where η2 = 0, we also have

ϕ(x) = ±√
εx + C2, ψ(x) = �(x) + η1xy, (5.25)

where � is an arbitrary function of x. In similarity with the previous cases, we can adjust �

to various solitonic, compact support functions.
The two reduced equations for subalgebra L4 can be combined into the following second-

order ordinary differential equation for ϕ

ε(1 + m2)2ϕξξ − 2(1 + m2)(1 + εm2)2(ϕξ )
2ϕξξ + ε(1 + εm2)4(ϕξ )

4ϕξξ

+ 2(1 − m2)η1η2(ϕξ )
3 − 4δε,1ϕξη1η2 = 0, (5.26)

which can be reduced to the first-order equation for ω

ε(1 + m2)2ωξ − 2(1 + m2)(1 + εm2)2ω2ωξ + ε(1 + εm2)4ω4ωξ

+ 2(1 − m2)η1η2ω
3 − 4δε,1ωη1η2 = 0. (5.27)
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This equation does not have the Painlevé property, implying that there are additional
singularities besides fixed poles.

For the case of subalgebra L6, the reduced equations from table 3 combine to give the
following equation for F:

(1 − ε(Fy)
2)2Fyy + ε

2

m2
η1η2(Fy)

3 +
2

m4
(1 − 2m2δε,1)η1η2Fy = 0. (5.28)

This equation can be transformed to the first-order ordinary differential equation for ω:

(1 − εω2)2ωy + ε
2

m2
η1η2ω

3 +
2

m4
(1 − 2m2δε,1)η1η2ω = 0. (5.29)

For the case of subalgebraL7, combination of the reduced equations gives us the following
equation for F:

(1 − ε(Fx)
2)2Fxx +

2

m5
η1η2(m

2(Fx)
2 + ε − 2m2δε,1) = 0. (5.30)

This equation corresponds to the first-order ordinary differential equation:

(1 − εω2)2ωx +
2

m5
η1η2(m

2ω2 + ε − 2m2δε,1) = 0. (5.31)

For subalgebra L8, the two reduced equations give us the equation

((m2 + εn2)4(Fξ )
4 − 4εm(n2 + εm2)3(Fξ )

3

+ (6m2(m2 + εn2)2 − 2εn2(n4 + εm4)(n2 + εm2) − 4m2n4(n2 + m2)δε,1)(Fξ )
2

+ 4m(n2(n4 + εm4) − εm2(n2 + εm2) + 2m2n4δε,1)Fξ

+ (m2(1 − εn2) − εn4)2) Fξξ

+ (−2εmn3(m2 + εn2)(Fξ )
3 + 2n3(n2 + 3εm2)(Fξ )

2

+ (4mn5δε,1 − 6εmn3)Fξ + 2εn3 − 4n5δε,1) η1η2 = 0. (5.32)

Through the substitution ω = ϕy , equation (5.32) can be reduced to a first-order equation.

6. Conclusions

In this paper, we have formulated supersymmetric generalizations for the Gaussian irrotational
fluid flow equation (1.20) and its modified version (1.21). It is interesting and significant to note
that the symmetry superalgebras for our supersymmetrized Gaussian fluid model equation and
for its modified version were isomorphic to each other, as well as to that of the supersymmetric
Born–Infeld scalar equation (1.4) as investigated in [30]. This is in contrast to the classical
case, where the symmetries for equation (1.20) included a rotation which was not present in
(1.21). The three translations in x, y and φ present in the classical case are also present in
the supersymmetric case, while the dilation in x, y and φ is modified to a dilation which also
includes the fermionic field ψ . However, the rotation transformation present in the classical
fluid equation (1.20) is not preserved in the corresponding supersymmetric equations (3.7) and
(3.8) for ε = 1. Conversely, a new translation in ψ and two more fermionic transformations
(for specific values of the parameters a, b, c and d) are present in the supersymmetric case.

Through the use of the symmetry reduction method, invariant solutions of the classical
and supersymmetric Gaussian fluid were systematically constructed. Solutions of the
classical Gaussian flow equation (1.20) include a kink-type fluid density (2.10) representing
a condensation wave and a solution (2.11) expressed in terms of the Lambert function. The
kink-type expression (2.10) is also present as a solution of the supersymmetric equations (4.8)
and (4.9) with ε = 1, where it represents the bosonic part of the solution (5.3) and (5.4).
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Its fermionic component is given in terms of radicals and trigonometric functions. The
classical modified equation (1.21) possesses a solution (2.15) expressed in terms of elliptic
functions, whose imaginary part can be used to approximate a bump function. This solution
also appears as the bosonic component of a solution (5.10) and (5.11) of the supersymmetric
equations (4.8) and (4.9) with ε = −1. For the invariant solutions of both supersymmetric
extensions, there are instances (e.g. (5.18), (5.19) and (5.25)) where the fermionic field ψ is an
arbitrary function of a single quantity. This permits us consider a wide range of possibilities
for the fermionic medium. Equations (3.7) and (3.8) represent the static case which involves
two spatial variables. It is expected that a supersymmetric extension of the Gaussian fluid flow
equations in (2 + 1) dimensions may yield richer classes of physically relevant solutions.
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